SM3 13.2: Geometric Sequences

<u>Memorize</u> :	General Rule: $a_n = a_1 \cdot r^{n-1}$	Recursive Rule: $a_n = r \cdot a_{n-1}$
<u>Vocab</u> :	<i>a</i> : a sequence of numbers	n: the number of terms in a sequence a
	a_1 : the first term of a sequence a	a_n : the n^{th} term of sequence a

r: the common ratio of a sequence a; multiply by r to get from any term to the next term; divide by r to get from any term to the previous term.

Let $a = 2, 8, 32, \dots$. Evaluate the following:

- 1) $a_1 = 2$ 2) $a_3 = 32$ 3) $a_5 = 512$
- 4) $a_8 = 32768$ 5) $n = \infty$ 6) r = 4

Let $b = \frac{1}{3}, -\frac{1}{9}, \frac{1}{27}, -\frac{1}{81}, \dots$. Evaluate the following:

7) $b_1 = \frac{1}{3}$ 8) $b_3 = \frac{1}{27}$ 9) $b_5 = \frac{1}{243}$

10)
$$b_{12} = -\frac{1}{531441}$$
 11) $n = \infty$ 12) $r = -\frac{1}{3}$

Let
$$c = \frac{5}{8}, \frac{5}{4}, ..., 80$$
. Evaluate the following:
13) $c_1 = \frac{5}{8}$
14) $c_3 = \frac{5}{2}$
15) $c_5 = 10$

16) $c_7 = 40$ 17) n = 8 18) r = 2

For problems 19-28, write the explicit formula for the sequence $a_n = a_1 \cdot r^{n-1}$ and find the indicated term.

William deposits \$5 into a savings account that has a 2% annual compound interest rate. Let c represent the amount of money in the account during the n^{th} year that the account is open.

29) Is c a geometric sequence? Justify your response.

Yes; there is a common ratio between terms.

30) $c_1 = 5$ 31) r = 1.02

32) How much money does William have after 5 years have passed? \$5.52

33) How much money does William have after 25 years have passed? \$8.20

A group of 500 students begin their mathematical career that will consist of SM1, SM2, SM3, Calc, and Stats. Each year, 10% of the students fail to complete the course. Let sequence w represent the number of students still in contention for having never failed a course where w_n represents number of students in the n^{th} class of the path listed above. If a fraction of a student fails the course, round up and have the whole student fail the course (we can't very well fail your arms but pass your legs, can we?).

34) Is *w* a geometric sequence? Justify your response.

Yes; there is a common ratio between terms.

35) $w_1 = 500$

36) r = 0.9

37) Write sequence w: 500, 450, 405, 364, 328

38) What percent of the initial group of students pass Stats? $\frac{295}{500} = 59\%$

39) If there are 5 courses that could be failed, and we lose 10% of the 500 students each year, why are there not 250 students passing Stats?

10% of the previous year's students fail; this is not the same as 10% of the starting student population.

To help his students learn to persevere in tough testing environments, Mr. Wytiaz turns off the heat to the classroom during a unit test. The room begins at 70° F, but the temperature falls by 3% every minute! Let *t* represent the temperature in the room after *n* minutes have passed, rounded to the nearest tenth.

- 40) $t_1 = 67.9$ 41) $t_2 = 65.9$
- 42) $t_5 = 60.1$ 43) r = 0.97

44) When will the room reach a temperature of 50°F or colder? Shortly after the 11th minute.